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Abstract

We study generating functions of certain shapes of planar polygons arising from
homological mirror symmetry of elliptic curves. We express these generating functions
in terms of rational functions of the Jacobi theta function and Zwegers’ mock theta
function and determine their (mock) Jacobi properties. We also analyze their special
values and singularities, which are of geometric interest as well.
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1 Introduction and statement of results
Elliptic curves provide a fertile ground for the study of the homological mirror symmetry
conjecture [10], which relates interesting algebraic structures occurring in the symplectic
geometry and complex geometry of different manifolds. They are very simple manifolds
that nevertheless exhibit surprisingly rich connections to many fields including Hodge
theory, modular forms, and mathematical physics.
Of central importance in this subject are the generating functions arising from the

open Gromov-Witten theory of elliptic curves. They give the structure constants for the
A∞-structure (i.e., the homotopy version of associative algebra structure) in the Fukaya
category (whose objects are Lagrangian submanifolds carrying vector bundles over them,
and whose morphisms concern relations among the vector bundles). On the one hand,
having a clear understanding of these functions is very useful to verify ideas and con-
jectures in homological mirror symmetry for elliptic curves and even for more general
manifolds. On the other hand, these functions frequently exhibit transformation proper-
ties of mock modular forms and Jacobi forms that are interesting to study on their own.
Specifically, they provide natural examples of mock modular forms of higher depth.Mock
modular forms are holomorphic parts of so-called harmonic Maass forms, which are non-
holomorphic generalizations of modular forms. Higher depths forms require additional
differential operators. The generating functions arising in this context are very concrete
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objects and can be expressed using elementary geometric objects. By definition they enu-
merate holomorphic disks on elliptic curves bounded by a given set of Lagrangians, with
appropriate weights specified for example by the area of the holomorphic disks. Due to the
simplicity of the universal cover of the elliptic curve, the Lagrangians are represented by
straight lines on the universal cover, holomorphic disks are then represented by polygons
whose edges lie on these straight lines. This allows the reduction of the enumeration of
these geometrical objects to a combinatorial problem. The resulting generating functions
may then be written down and turn out to be indefinite theta functions [12,13,15,16],
see also [4,9]. In particular, it was found in [16] that the enumeration of triangles yields
Jacobi theta functions. The enumeration of parallelograms [13,15,16] gives the Göttsche-
Zagier series [8], while that of more general shapes of 4-gons give the Appell-Lerch sums
studied by Kronecker that describe sections of rank two vector bundles on the elliptic
curve as shown by [14]. Interestingly, while the former only involves the usual Jacobi theta
functions, the latter are related to the mock theta functions.
Recently there also have been some works considering the genus zero open Gromov-

Witten invariants of the quotient of elliptic curves called elliptic orbifolds [2,3,5,6,11].
A detailed study of the mock modularity of some generating functions arising from this
context was performed in [2,3,11].We remark that the objects studied in the present work
differ from those in the abovementioned papers in that the occurring generating functions
are different: the former mainly works with fixed Lagrangians, while in the present work
deformations of the Lagrangians are considered as set up originally in [16].
In this paper, we follow the lines in [13,15,16] and study the generating functions arising

from the enumeration of particular shapes of 4-gons and 5-gons. The main result of this
paper is the following (see (6.1) and (7.1) for the generating functions and Theorem 6.3
and Theorem 7.4 for the mock Jacobi properties).

Theorem 1.1 The functions f3 and f4 satisfy mock Jacobi properties.

A careful analysis of the modular behavior of the generating functions reveals the global
properties of the Gromov-Witten theory on the geometric side. Moreover, the study of
special values and singularities can be used to detect what happens in the geometric
context, which are otherwise very hard to approach (for example, when the Lagrangians
do not intersect transversally). While the study of these very special shapes are already
interesting, we hope to extend our investigation to include more general shapes of 5-gons
and 6-gons in future work.
The paper is organized as follows. In Sect. 2 we provide some preliminary results and

conventions on Jacobi theta functions and mock theta functions of Zwegers. In Sect. 3
we review the geometric construction of the generating functions. We then study the
generating functions case by case in Sect. 4 to 7. We conclude with some discussions and
a conjecture in the final section.

2 Preliminaries
In this sectionwe recall somemodular forms andgeneralizations thereof,whichwe require
for this paper. Note that we frequently suppress τ in the notation of functions f : CN ×
H → C, (z, τ ) �→ f (z) = f (z; τ ) if it is viewed as fixed. Here and throughout we write
components of vectorsw ∈ C

N asw1, . . . , wN and ζj := e2π izj .Wewrite real and imaginary
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parts as τ = u + iv ∈ C, z = x + y ∈ C
N and frequently use q := e2π iτ , ζ := e2π iz , and

ζj := e2π izj for j ∈ N. The Dedekind eta function

η(τ ) := q
1
24

∞∏

n=1
(1 − qn)

is a modular form of weight 1
2 with multiplier

νη

( a b
c d

)
:=

⎧
⎨

⎩

(
d
|c|
)
e

π i
12 ((a+d)c−bd(c2−1)−3c) if c is odd,

( c
d
)
e

π i
12 (ac(1−d2)+d(b−c+3)−3) if c is even,

which means that for
( a b
c d

) ∈ SL2(Z) we have

η
(
aτ+b
cτ+d

)
= νη

( a b
c d

)
(cτ + d)

1
2 η(τ ). (2.1)

The Jacobi theta function is defined as

ϑ(z; τ ) :=
∑

n∈ 1
2+Z

q
n2
2 e2π in

(
z+ 1

2

)

= −iq
1
8 ζ− 1

2
∏

n≥1
(1 − qn)

(
1 − ζqn−1) (1 − ζ−1qn

)

We require the following properties of ϑ .

Lemma 2.1 (1) We have

ϑ(−z) = −ϑ(z).

(2) For �, m ∈ Z, we have

ϑ (z + �τ + m) = (−1)�+mq− �2
2 ζ−�ϑ (z) .

(3) We have

η3

ϑ
( 1
2
)
ϑ
(

τ
2
) = − i

2q
1
4 ϑ

(
τ
2 − 1

2
)
.

(4) We have for
( a b
c d

) ∈ SL2(Z)

ϑ
(

z
cτ+d ;

aτ+b
cτ+d

)
= ν3η

( a b
c d

)
(cτ + d)

1
2 e

π icz2
cτ+d ϑ(z; τ ).

Remark Lemma 2.1 (2), (4) imply that ϑ transforms like a Jacobi form of weight 1
2 and

index 1
2 for SL2(Z) with multiplier ν3η .

Furthermore, we use the following higher-dimensional generalization of Jacobi forms.

Definition 2.2 Let f : Cr × H → C be a meromorphic function with possible poles in
z ∈ C

r . We call f a meromorphic Jacobi form of weight k and index M ∈ 1
2Z

r×r for the
subgroup 	 ⊂ SL2(Z) if it satisfies for some a > 0 the growth condition

f (z; τ )e− 4π
v yTMy ∈ O (eav) as v → ∞,
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for z ∈ C
r , �,m ∈ Z

r the elliptic transformation

f (z + �τ + m) = e−4π izTM�q−�TM�f (z)

and for
( a b
c d

) ∈ 	 the modular transformation

f
(

z
cτ+d ;

aτ+b
cτ+d

)
= (cτ + d)ke

2π ic
cτ+d zTMz f (z; τ ).

Both transformation identities can be modified with some multiplier. If f is holomorphic
on all ofCr ×H and f (z; τ )e− 4π

v yTMy is bounded as v → ∞ , we call it holomorphic Jacobi
form.

We call a meromorphic function f : Cr × H → C (with possible poles in the z-variable)
a mock Jacobi form of weight k and index M ∈ 1

2Z
r×r for the subgroup 	 ⊂ SL2(Z) if it

can be completed in the sense of [1,7] to a function that transforms as a Jacobi form of
the same weight, index, and subgroup (and possibly multiplier).
Next recall Lemma 2.3 of [2], which states the following.

Lemma 2.3 We have, for 0 < y1, y2 < v
∑

n∈Z

ζ n
1

1 − ζ2qn
= −iη3

ϑ(z1 + z2)
ϑ(z1)ϑ(z2)

.

Furthermore, we require the Appell functions

A (z1, z2; τ ) := eπ iz1
∑

n∈Z

(−1)nq
n(n+1)

2 e2π inz2
1 − e2π iz1qn

, μ (z1, z2; τ ) := A(z1, z2; τ )
ϑ(z2; τ )

.

We recall some properties of A and μ that can be easily deduced from Proposition 1.4
of [17]. In part (4) we moreover state a consequence of Lemma 2.4 (2) for z0 = −z − 1

2 ,
z1 = z, and z2 = z − τ

2 + 1
2 .

Lemma 2.4 Let z, z0, z1, z2 ∈ C \ (Zτ + Z) and � ∈ Z.

(1) We have

μ (z1 + τ , z2 + τ ) = μ (z1, z2) , A (z1 + �τ , z2 + �τ ) = (−1)�q− �2
2 ζ−�

2 A (z1, z2) .

(2) Assuming that z1 + z0, z2 + z0 /∈ Zτ + Z we have

μ(z1 + z0, z2 + z0) = μ(z1, z2) + iη3ϑ(z1 + z2 + z0)ϑ(z0)
ϑ(z1)ϑ(z2)ϑ(z1 + z0)ϑ(z2 + z0)

.

(3) We have

μ(z1, z2) + q− 1
2 ζ−1

1 ζ2μ(z1 + τ , z2) = −iq− 1
8 ζ

− 1
2

1 ζ
1
2
2 ,

μ(−z1,−z2) = μ(z2, z1) = −μ(z1 + 1, z2) = μ(z1, z2), μ
( 1
2 ,

τ
2
) = − 1

2q
1
8 .

(4) We have

A
(
z, z − τ

2 + 1
2
) = − 1

2q
1
8 ϑ

(
z − τ

2 + 1
2
)+ 1

2q
1
4 ϑ

(
τ
2 − 1

2
) ϑ

(
z − τ

2
)
ϑ
(
z + 1

2
)

ϑ(z)
.
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The function A also has a modular completion i.e., adding a (simpler) non-holomorphic
piece yields a function Â which transforms like a Jacobi form. To be precise, set

Â (z1, z2; τ ) := A (z1, z2; τ ) + i
2ϑ (z2; τ )R (z1 − z2; τ )

with R(z; τ ) := ∑
n∈ 1

2+Z
(sgn(n) − E((n + y

v )
√
2v))(−1)n− 1

2 q− n2
2 e−2π inz . Here E(x) :=

2
∫ x
0 e−π t2dt denotes the usual error function. We also define μ̂(z1, z2; τ ) := Â(z1,z2;τ )

ϑ(z2;τ ) .
The function Â transforms as a Jacobi form of weight one and index 1

2
(−1 1

1 0
)
as proven

in [17].

Lemma 2.5 (1) We have, for �,m ∈ Z
2,

Â (z + �τ + m) = (−1)�1+m1e2π i(�1−�2)z1e−2π i�1z2q
�21
2 −�1�2Â (z) .

(2) We have, for
( a b
c d

) ∈ SL2(Z),

Â
(

z1
cτ+d ,

z2
cτ+d ;

aτ+b
cτ+d

)
= (cτ + d)e

π ic(−z21+2z1z2)
cτ+d Â (z; τ ) .

Remark The function μ̂ transforms like a Jacobi form of weight 1
2 and index 1

2
(−1 1

1 −1
)

(with multiplier).

Furthermore, we let

F (z; τ ) (2.2)

:= q− 1
8 ζ

− 1
2

1 ζ
1
2
2 ζ

1
2
3

⎛

⎝
∑

n∈N0×N2

+
∑

n∈N0×(−N)2

⎞

⎠ (−1)n1q
n1(n1+1)

2 +n1n2+n1n3+n2n3ζ n1
1 ζ

n2
2 ζ

n3
3 .

Theorem 1.3 of [2] rewrites F in terms of μ and ϑ .

Lemma 2.6 We have for 0 < y2, y3 < v

F (z) = iϑ(z1)μ(z1, z2)μ(z1, z3) − η3ϑ(z2 + z3)
ϑ(z2)ϑ(z3)

μ(z1, z2 + z3).

3 Geometric construction
We now review the construction of the generating functions in consideration following
[12,15]. For this, we fix the lattice 
 = Z�1 ⊕ Z�2 in R

2, where

�1 := (1, 0) , �2 :=
(
− 1

2 ,
√
3
2

)
.

Furthermore we fix three sets Lj , j ∈ {1, 2, 3} of straight lines defined as follows

L1 :=
{
(t1, 0) + � + R(2�1 + �2) : � ∈ 


}
, L2 :=

{
(t2, 0) + � + R(−�1 − 2�2) : � ∈ 


}
,

L3 :=
{
(t3, 0) + � + R(−�1 + �2) : � ∈ 


}
.

The values tj , j ∈ {1, 2, 3} are chosen such that none of three lines intersect at a common
point1.

1This condition is usually needed in order to avoid many subtleties in defining the Fakaya category. Below by studying
the generating functions we are able to infer what happens if they do intersect.
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Consider convex N -polygons � bounded by a set of straight lines from Lj , j ∈ {1, 2, 3}.
Elementary geometry shows that in the present case we must have 3 ≤ N ≤ 6. Denote its
set of vertices by v1, . . . , vN in the clockwise order, and the oriented edge from the vertex
vk to vk+1 by ek for k ∈ {1, 2, . . .N }, where we use the convention vN+1 = v1. We also
denote the area of the N -gon � by area(�) and the length of the edge ek of � by |ek (�)|.
We introduce N real-valued variables β∗

k , k ∈ {1, 2, . . .N }, one for each edge ek .
We fix one of these convex N -gons �0 with vertices V1, . . . , VN and edges E1, . . .EN

and consider the following summation

∑

�∈S(�0)
sgn(�) e2π iarea(�)we2π i

∑N
k=1 |ek (�)|β∗

k , Im(w) > 0, (3.1)

where

S(�0) :=
{
� : � is an N -gon such that ek and Ek are on straight lines in the same set Lj ,

and vk − Vk ∈ 
 for all k ∈ {1, . . . , N }} /
,

and 
 acts pointwisely on an N -gon � and the function sgn(�) is given by (denoting the
j-th component of a vertex vk by (vk )j)

sgn(�) := sgn((v1)2 − (vN )2)N−1,

where sgn(x) := |x|
x for x �= 0 and sgn(0) := 0. One could replace the function sgn(�) by

sgn((vk+1)2−(vk )2)N−1 for any k , whichwould only possibly change thewhole summation
by an overall sign.
To simplify the summation in (3.1) we find an explicit description of S(�0). By trans-

lation, we can assume that all of the polygons � share the same vertex, say v1, with the
reference N -gon �0. Denoting the length of the k-th edge Ek of the reference N -gon �0
by αk , we can describe� by the oriented length of the sides nk +αk ∈ Rwith nk ∈ Z (since
the intersections of a straight line �j ∈ Lj with the lines inLm,m �= j have integer distance
from each other). We can omit nN−1 + αN−1 and nN + αN since they are determined
by n1 + α1, . . . , nN−2 + αN−2 (since eN−1 and eN have to be parallel to EN−1 and EN ,
respectively), but we get some conditions encoded in ψ below.
Writing r := N−2,βk := sgn(ek )β∗

k , τ := 2√
3
w, one obtains that the generating function

(3.1) can be written as

∑

n∈Zr

ψ(n + α) sgn(nr + αr)qQ(n+α)e2π iB(n+α,β) ,

where

• n + α = (n1 + α1, . . . nr + αr) denotes the set of independent parameters for the
oriented lengths of �;

• B is the bilinear form such that the quadratic form
√
3
2 Q(n+α) := 1

2

√
3
2 B(n+α,n+α)

is the area of the corresponding N -gon �;
• ψ(n+α) is the characteristic function of the region in Z

r such thatQ(n+α) > 0 and
that sgn(eTk ek+1) is the same as sgn(ET

k Ek+1) for k ∈ {1, 2, . . .N }.
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α1
α2

n1 + α1

n2 + α2

V1

Fig. 1 The blue parallelogram is �0, and the other parallelograms are shifted such that v1 = V1. The grey
parallelograms appear in the summation, but the red one does not

An easy inspection shows that the quadratic formQ induced byB has signature (1, r−1).
We consider the generating function as a Jacobi form by setting z := ατ + β ∈ C

r as an
elliptic variable andmodify it slightly by multiplying with q−Q(α)e−2π iB(α,β) to obtain nicer
transformation laws and cleaner formulas. Writing χ (n+ α) = ψ(n+ α)sgn(nr + αr), we
define

�Q,χ (z; τ ) :=q−Q(α)e−2π iB(α,β)
∑

n∈Zr

ψ(n + α) sgn(nr + αr)qQ(n+α)e2π iB(n+α,β)

=
∑

n∈Zr

χ
(n + y

v
)
qQ(n)e2π iB(n, z). (3.2)

A direct calculation gives the following elliptic transformation.

Lemma 3.1 For �,m ∈ Z
r we have

�Q,χ (z + �τ + m) = q−Q(�)e−2π iB(�, z)�Q,χ (z).

4 N = 3: equilateral triangles
In this section we consider the enumeration of equilateral triangles, for which we have

Q(n + α) = 3
2 (n + α)2.

The enumeration of equilateral triangles leads to the function

f1(z; τ ) :=
∑

n∈Z
q

3n2
2 ζ 3n.

Note that this is just a renormalized version of one of the Jacobi theta functions, which is
a Jacobi form. We compute the elliptic transformation as (�, m ∈ Z)

f1(z + �τ + m) = q
3�2
2 ζ−3�f1(z). (4.1)

Lemma 2.1 (4) gives that f1 is a holomorphic Jacobi form of weight 1
2 and index 3

2 on
	0(3) ∩ 	(2). To be more precise, additionally to (4.1), we have for

( a b
c d

) ∈ 	0(3) ∩ 	(2)

f1
(

z
cτ+d ;

aτ+b
cτ+d

)
= ( 3c

d
)
e

π i(d−1)
4 (cτ + d)

1
2 e

3π icz2
cτ+d f1(z; τ ).
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5 N = 4: parallelograms
In this section, we study the generating function obtained for parallelograms and relate it
to the Jacobi theta function. Following the geometric construction, we have

Q(n+ α) = 3(n1 + α1)(n2 + α2)

and obtain from (3.2) the generating function for parallelograms as

f2(z; τ ) :=
∑

n∈Z2

χ2
(n + y

v
)
q3n1n2ζ 3n2

1 ζ
3n1
2 ,

where χ2(x) := sgn(x1)H (x1x2). Here we define the Heaviside step function by H (x) := 1
for x > 0 and H (x) := 0 for x ≤ 0.
The following elliptic transformation follows directly from Lemma 3.1.

Lemma 5.1 For �,m ∈ Z
2 we have

f2(z + �τ + m) = q−3�1�2ζ−3�2
1 ζ

−3�1
2 f2 (z) .

We determine the following explicit shape of f2 in terms of the Jacobi theta function.

Proposition 5.2 For y1, y2 /∈ Zv we have

f2(z; τ ) = −iη3(3τ )
ϑ (3z1 + 3z2; 3τ )

ϑ (3z1; 3τ )ϑ (3z2; 3τ )
. (5.1)

The function f2 is a meromorphic Jacobi form of weight one and index 1
2
( 0 3
3 0

)
on 	0(3).

To be more precise, the elliptic transformation law in Lemma 5.1 holds and we have for( a b
c d

) ∈ 	0(3)

f2
(

z1
cτ+d ,

z2
cτ+d ;

aτ+b
cτ+d

)
= (cτ + d)e

6π icz1z2
cτ+d f2(z1, z2; τ ).

Proof One can rewrite f2 as

f2(z) =
⎛

⎜⎝
∑

n+ y
v>0

−
∑

n+ y
v<0

⎞

⎟⎠ q3n1n2ζ 3n2
1 ζ

3n1
2 = ζ

3(1−⌈ y2
v
⌉
)

1
∑

n∈Z

(
ζ 32 q

3
(
1−

⌈ y2v
⌉))n

1−ζ 31 q3n
. (5.2)

Equation (5.1) follows for 0 < y1, y2 < v using Lemma 2.3 and generalizes to y1, y2 /∈ Zv
by applying Lemma 5.1 and Lemma 2.1 (2). The transformation laws can then deduced
from Lemma 2.1 (2), (4) and equation (2.1). ��

The main goal of this section is to study and determine the behavior of f2 at the points
of discontinuity. This is done in the following proposition.

Proposition 5.3 Let y1 /∈ Zv and y2 ∈ Zv. Then we have for x2 − uy2
v ∈ 1

3Z

lim
ε→0+ ε

∑

±
±f2(z1, z2 ± iε) = 1

3π ζ
− 3y2

v
1 , lim

ε→0+ εf2(z1, z2 + iε) = 1
6π ζ

− 3y2
v

1 . (5.3)
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Moreover for x2 − uy2
v /∈ 1

3Z, we have

lim
ε→0+

∑

±
±f2(z1, z2 ± iε) = 0, (5.4)

lim
ε→0+ f2(z1, z2 + iε; τ ) = − iη3(3τ )ϑ(3(z1 + z2); 3τ )

ϑ(3z2; 3τ )
. (5.5)

Proof We first assume that z2 = x2 ∈ R and use (5.2) to compute, for 0 < ε < v,

∑

±
±f2(z1, x2 ± iε)

=
⎛

⎜⎝
∑

n1+ y1
v , n2≥0

−
∑

n1+ y1
v , n2<0

⎞

⎟⎠ q3n1n2ζ n2
1 e6π i(x2+iε)n1

−

⎛

⎜⎜⎝
∑

n1+ y1
v ≥0

n2>0

−
∑

n1+ y1
v <0

n2≤0

⎞

⎟⎟⎠q3n1n2ζ n2
1 e6π i(x2−iε)n1

=
∑

n1+ y1
v ≥0

n2>0

q3n1n2ζ 3n2
1

(
e6π in1(x2+iε) − e6π in1(x2−iε)

)

+
∑

n1+ y1
v <0

n2<0

q3n1n2ζ 3n2
1

(
−e6π in1(x2+iε) + e6π in1(x2−iε)

)

+
∑

n1+ y1
v ≥0

e6π in1(x2+iε) +
∑

n1+ y1
v <0

e6π in1(x2−iε).

The first two sums vanish in the limit ε → 0+ since we can exchange limit and summation
using Lebesque dominated convergence. The final two terms combine to

e−6π i
⌊ y1

v
⌋
x2

(
e6π

⌊ y1
v
⌋
ε

1 − e6π i(x2+iε) − e−6π
⌊ y1

v
⌋
ε

1 − e6π i(x2−iε)

)
.

From this we obtain (5.4) and the first claim in (5.3) in the case that z2 ∈ R. In the general
case, we write z2 = x2 + i�v = x2 − �u+ �τ for some � ∈ Z and then employ Lemma 5.1.
We next compute, using Lemma 5.1 and Proposition 5.2,

f2(z1, z2 + iε; τ ) = ζ−3�
1 f2(z1, x2 − �u + iε; τ )

= −iζ−3�
1 η3(3τ )

ϑ(3z1 + 3(x2 − �u + iε); 3τ )
ϑ(3z1; 3τ )ϑ(3(x2 − �u + iε); 3τ )

.

This directly implies (5.5). If x2 − �u ∈ 1
3Z, we use Lemma 2.1 (2) to obtain the second

claim in (5.3). ��

6 N = 4: trapezoids
In this section we study the generating function obtained in (3.1) for trapezoids and relate
it to Appell functions. Here we assume without loss of generality that |α2| < |α1| and
obtain the quadratic form

1
3Q(n + α) = 1

2 (n1 + α1)2 − 1
2 (n2 + α2)2.
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For general values of αk and βk , k ∈ {1, 2}, we have
z1 := β1 + α1τ , z2 := β2 + α2τ , |α2| < |α1|.

The enumeration (3.2) gives the generating function for trapezoids

f3(z; τ ) :=
∑

n∈Z2

χ3
(n + y

v
)
q

3
2 (n21−n22)ζ 3n1

1 ζ
−3n2
2 , (6.1)

where

χ3 (x) := sgn (x1)H (|x1| − |x2|)H∗(x1x2)

and H∗(x) := 1 for x ≥ 0, H∗(x) := 0 for x < 0.
We first again state the elliptic transformation law of f3 that follows by Lemma 3.1.

Lemma 6.1 We have for �,m ∈ Z
2 and z ∈ C

2

f3(z + �τ + m) = q− 3
2 (�21−�22)ζ−3�1

1 ζ
3�2
2 f3(z).

We observe the following connection of f3 to Appell functions for generic values of z.

Proposition 6.2 For y2, y1 − y2 /∈ Zv, we have

f3(z; τ ) =
(
ζ−1
1 ζ2

)3
(
1
2+⌊ y2

v
⌋)

A
(
3 (z1 − z2) , 3z1 − 3

⌊ y2
v
⌋

τ − 3τ
2 + 1

2 ; 3τ
)
.

Proof Using the definition of f3, it is not hard to see that

f3(z) = 1
2

∑

n∈Z2

(
sgn

(
n1 − n2 + 1

v (y1 − y2)
)+ sgn

(
n2 + y2

v
))
q

3
2 (n21−n22)ζ 3n1

1 ζ
−3n2
2

= 1
2

∑

n∈Z2

(
sgn

(
n1 + 1

v (y1 − y2)
)+ sgn

(
n2 + y2

v
))
q

3
2 (n21+2n1n2)ζ 3(n1+n2)

1 ζ
−3n2
2 ,

changing variables n1 �→ n1 + n2. The claimed identity now follows by using that

1
2

∑

n2∈Z

(
sgn

(
n1 + 1

v (y1 − y2)
)+ sgn

(
n2 + y2

v
))
q3n1n2ζ 3n2

1 ζ
−3n2
2

=
q−3

⌊ y1
v
⌋
n1
(
ζ−1
1 ζ2

)3⌊ y2
v
⌋

1 − ζ 3
1 ζ−3

2 q3n1

and then plugging in the definition of the Appell function. ��

To state the (mock) Jacobi properties of f3, define its completion

f̂3(z; τ ) :=
(
ζ−1
1 ζ2

)3
(
1
2+⌊ y2

v
⌋)

Â
(
3 (z1 − z2) , 3z1 − 3

⌊ y2
v
⌋

τ − 3τ
2 + 1

2 ; 3τ
)
.
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Theorem 6.3 The function f3 is a mock Jacobi form of weight one and index 1
2
( 3 0
0 −3

)
for

	0(3) ∩ 	(2). To be more precise, we have for
( a b
c d

) ∈ 	0(3) ∩ 	(2)

f̂3
(

z1
cτ+d ,

z2
cτ+d ;

aτ+b
cτ+d

)
= (cτ + d)e

π ic
cτ+d (3z21−3z22) f̂3(z1, z2; τ )

and for �,m ∈ Z
2

f̂3(z + �τ + m) = q− 3
2 (�21−�22)ζ−3�1

1 ζ
3�2
2 f̂3(z).

Proof The elliptic and modular properties of the completion f̂3 can be deduced from
those of Â after shifting away −3

⌊ y2
v
⌋

τ . ��

We next determine the behavior of f3 at the singularities.

Proposition 6.4 Assume that y1 /∈ Zv. If y2 ∈ Zv, then we have

lim
ε→0+ f3 (z1, z2 + iε; τ )

= q− 3y2
2v (

y2
v +1)ζ− 3

2
1 ζ

3y2
v + 3

2
2 ϑ

(
3z1 − 3τ

2 + 1
2 ; 3τ

)
μ
(
3z2 − 3y2

v τ + 1
2 ,

3τ
2 ; 3τ

)

−i
(
ζ−1
1 ζ2

) 3
2 η3(3τ )ϑ

(
3(z1 − z2) − 3τ

2 ; 3τ
)
ϑ
(
3z1 + 1

2 ; 3τ
)

ϑ (3(z1 − z2); 3τ )ϑ
(
3z2 + 1

2 ; 3τ
)
ϑ
( 3τ
2 ; 3τ

) .

In particular, for z2 = �τ + m with �, m ∈ Z we have

lim
ε→0+ f3 (z1, �τ + m + iε; τ )

= −1
2
q

3�2
2 + 3

8 ζ
− 3

2
1 ϑ

(
3z1 − 3τ

2 + 1
2 ; 3τ

)

− 1
2
q

3�2
2 + 3

4 ζ
− 3

2
1

ϑ
( 3τ
2 − 1

2 ; 3τ
)
ϑ
(
3z1 − 3τ

2 ; 3τ
)
ϑ
(
3z1 + 1

2 ; 3τ
)

ϑ(3z1; 3τ )
.

Proof We first assume z2 = x2 ∈ R and plug in Proposition 6.2 to obtain for y1 /∈ Zv and
ε > 0,

f3 (z1, x2 + iε; τ ) = e6π i(−z1+x2+iε)
(
1
2+� ε

v �
)

A
(
3 (z1 − x2 − iε) , 3z1 − 3

⌊ε

v

⌋
τ − 3τ

2 + 1
2 ; 3τ

)

and thus

lim
ε→0+ f3 (z1, x2 + iε; τ ) = ζ

− 3
2

1 e3π ix2A
(
3z1 − 3x2, 3z1 − 3τ

2 + 1
2 ; 3τ

)
.

To compute the right-hand side, we rewrite A(z − x2, z − τ
2 + 1

2 ), using Lemma 2.4 (2)
with z1 = z − x2, z2 = z − τ

2 + 1
2 , and z0 = −z − 1

2 , as

A
(
z − x2, z − τ

2 + 1
2
)

= ϑ
(
z − τ

2 + 1
2
)
μ
(−x2 − 1

2 ,− τ
2
)− iη3ϑ

(
z − x2 − τ

2
)
ϑ
(−z − 1

2
)

ϑ(z − x2)ϑ
(−x2 − 1

2
)
ϑ
(− τ

2
) .

Using the second identity in Lemma 2.4 (3) and simplifying the theta quotient using
Lemma 2.1 (1) and plugging in z �→ 3z1, x2 �→ 3x2, and τ �→ 3τ gives
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lim
ε→0+ f3 (z1, x2 + iε; τ ) = ζ

− 3
2

1 e3π ix2
(

ϑ
(
3z1 − 3τ

2 + 1
2 ; 3τ

)
μ
(
3x2 + 1

2 ,
3τ
2 ; 3τ

)

− iη3(3τ )ϑ
(
3z1 − 3x2 − 3τ

2 ; 3τ
)
ϑ
(
3z1 + 1

2 ; 3τ
)

ϑ(3z1 − 3x2; 3τ )ϑ
(
3x2 + 1

2 ; 3τ
)
ϑ
( 3τ
2 ; 3τ

)
)
.

To finish the proof, we use Lemma 6.1. We obtain, writing z2 = x2 − �u + �τ with � ∈ Z

lim
ε→0+ f3 (z1, z2 + iε; τ ) = q

3�2
2 lim

ε→0+ e6π i�(x2−�u+iε)f3 (z1, x2 − �u + iε; τ )

= q
3�2
2 e6π i�(x2−�u)ζ

− 3
2

1 e3π i(x2−�u)

(
ϑ
(
3z1 − 3τ

2 + 1
2 ; 3τ

)
μ
(
3 (x2 − �u) + 1

2 ,
3τ
2 ; 3τ

)

− iη3(3τ )ϑ
(
3z1 − 3 (x2 − �u) − 3τ

2 ; 3τ
)
ϑ
(
3z1 + 1

2 ; 3τ
)

ϑ(3z1 − 3 (x2 − �u) ; 3τ )ϑ
(
3 (x2 − �u) + 1

2 ; 3τ
)
ϑ
( 3τ
2 ; 3τ

)
)
.

Using Lemma 2.1 (2) and simplifying gives the claim.
The simplified expression in the special case z2 = �τ + m with �, m ∈ Z follows from a

straightforward computation using Lemma 2.1 (3). ��

We next determine the jumping behavior at the points excluded in Proposition 6.2.
Recall thatA(z1, z2) has poles for z1 ∈ Z+Zτ . Note that the right-hand side of Proposition
6.2 is continuous for z1 − z2 /∈ Zτ + Z and y2 /∈ vZ. Thus we may take the limit of
Proposition 6.2 in this case. Next we consider y2 ∈ Zv and determine the jump.

Lemma 6.5 Assume that y2 ∈ Zv. Then we have

lim
ε→0+

∑

±
±f3 (z1, z2 ± iε; τ ) = −q− 3y22

2v2
+ 3

8 ζ
3
2
1 ζ

3y2
v

2 ϑ
(
3z1 + 3τ

2 + 1
2 ; 3τ

)
.

Proof Write y2 = �v with � ∈ Z. Then Lemma 6.1 gives

f3 (z1, x2 − �u + �τ ± iε) = q
3�2
2 e6π i�(x2−�u±iε)f3 (z1, x2 − �u ± iε) .

Thus the left-hand side of Lemma 6.5 becomes

q− 3�2
2 ζ 3�

2 lim
ε→0+

∑

±
±e±6π i�εf3(z1, x2 − �u ± iε).

We then compute

lim
ε→0+

∑

±
±e±6π i�εf3(z1, x2 − �u ± iε; τ )

=
⎛

⎜⎝
∑

n1+ y1
v , n2≥0

−
∑

n1+ y1
v , n2<0

−
∑

n1+ y1
v ≥0, n2>0

+
∑

n1+ y1
v <0, n2≤0

⎞

⎟⎠ q
3n21
2 +3n1n2ζ 3n1

1

(
ζ1ζ

−1
2

)3n2

=
⎛

⎜⎝
∑

n+ y1
v ≥0

+
∑

n+ y1
v <0

⎞

⎟⎠ q
3n2
2 ζ 3n

1 =
∑

n∈Z
q

3n2
2 ζ 3n

1 = −q
3
8 ζ

3
2
1 ϑ

(
3z1 + 3τ

2 + 1
2 ; 3τ

)
.

This gives the claim. ��
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7 N = 5: pentagons
In this section we study the enumeration of the pentagons and observe that the behaviour
at jumps is determined by the function appearing in the enumeration of trapezoids. In
this case, we assume |α3| < min{|α1|, |α2|} and obtain the quadratic form

1
3Q(n + α) = (n1 + α1)(n2 + α2) − 1

2 (n3 + α3)2,

For general values of βk , k ∈ {1, 2, 3}, the enumeration of pentagons gives

f4(z; τ ) :=
∑

n∈Z3

χ4
(n + y

v
)
q3n1n2−

3n23
2 ζ

3n2
1 ζ

3n1
2 ζ

−3n3
3 . (7.1)

where

χ4(x) := H∗(|x1| − |x3|)H∗(|x2| − |x3|)H∗(x1x2).

With S1 := {x ∈ R
3 : x1, x2 ≥ x3 ≥ 0} and S2 := {x ∈ R

3 : −x1,−x2 ≥ x3 ≥ 0}, we write

f4(z) =
∑

n∈Z3

n+ y
v ∈±(S1∪S2)

q3n1n2−
3n23
2 ζ

3n2
1 ζ

3n1
2 ζ

−3n3
3 .

If y3, y1 − y3, y2 − y3 /∈ Zv, then we have

f4(z) = g4(z) + g4 (−z1,−z2, z3) ,

where (with S3 := {x ∈ R
3 : x1, x2 > x3 > 0})

g4(z; τ ) :=

⎛

⎜⎜⎜⎝
∑

n∈Z3

n+ y
v ∈S1

+
∑

n∈Z3

n+ y
v ∈−S3

⎞

⎟⎟⎟⎠ q3n1n2−
3n23
2 ζ

3n2
1 ζ

3n1
2 ζ

−3n3
3 .

We now want to write g4 as higher depth Appell functions. We start by making the
change of variables n1 �→ n1 + n3, n2 �→ n2 + n3. Then we have, assuming that y3, y1 −
y3, y2 − y3 /∈ Zv and writing Y1 := 3� y1−y3

v �, Y2 := 3� y2−y3
v �, and Y3 := 3� y3

v �

g4(z) =

⎛

⎜⎜⎝
∑

n∈Z3
3n+Y≥0

+
∑

n∈Z3
3n+Y<0

⎞

⎟⎟⎠ q3n1n2+3n1n3+3n2n3+ 3n23
2 ζ

3(n2+n3)
1 ζ

3(n1+n3)
2 ζ

−3n3
3 . (7.2)

Using Lemma 3.1, we obtain the following transformation.

Lemma 7.1 Assume that �,m ∈ Z
3.

(1)We have

f4(z + �τ + m) = q−3�1�2+ 3�23
2 ζ

−3�2
1 ζ

−3�1
2 ζ

3�3
3 f4(z).

(2)We have

g4(z + �τ + m) = q−3�1�2+ 3�23
2 ζ

−3�2
1 ζ

−3�1
2 ζ

3�3
3 g4(z).
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To rewrite g4 in terms of known functions, we let

F∗(z; τ ) := q− 1
8 ζ

− 1
2

1 ζ
1
2
2 ζ

1
2
3

⎛

⎜⎝
∑

n∈N3
0

+
∑

n∈−N3

⎞

⎟⎠ (−1)n1q
n1(n1+1)

2 +n1n2+n1n3+n2n3ζ n1
1 ζ

n2
2 ζ

n3
3 .

Shifting n3 �→ n3 − � y3
v �, nj �→ nj − � yj−y3

v �, j ∈ {1, 2} in F∗ yields the following lemma.

Proposition 7.2 We have

g4(z; τ ) = iq
1
3 (Y1Y2+Y1Y3+Y2Y3)+ Y 2

3
6 + Y3

2 − 3
8 ζ

−Y2−Y3
1 ζ

−Y1−Y3
2 ζ

Y3− 3
2

3

× F∗ (3(z1 + z2 − z3) − (Y1 + Y2 + Y3) τ − 3τ
2 + 1

2 ,

3z1 − (Y1 + Y3) τ , 3z2 − (Y2 + Y3) τ ; 3τ ) .

The following lemma states F∗ in terms of the μ-function.

Lemma 7.3 For 0 < y2, y3 < v

F∗(z) = iϑ(z1)μ(z1, z2)μ(z1, z3) + q− 1
2 ζ−1

1 ζ2ζ3
η3ϑ(z2 + z3)
ϑ(z2)ϑ(z3)

μ(z1 + τ , z2 + z3).

Proof Wemay write

F∗(z) = F (z) + q− 1
8 ζ

− 1
2

1 ζ
1
2
2 ζ

1
2
3

⎛

⎝
∑

n2 ,n3≥0
−

∑

n2 ,n3<0

⎞

⎠ qn2n3ζ n2
2 ζ

n3
3 ,

where F is defined in (2.3). Now, using Lemma 2.3, we obtain
⎛

⎝
∑

n2 ,n3≥0
−

∑

n2 ,n3<0

⎞

⎠ qn2n3ζ n2
2 ζ

n3
3 = −iη3

ϑ(z2 + z3)
ϑ(z2)ϑ(z3)

. (7.3)

The claim then follows using Lemma 2.4 (3) and Lemma 2.6. ��
We define the completion of f4 as

f̂4 (z; τ ) :=iq− 3
8 ζ

− 3
2

3
∑

±
F̂∗ (3 (±z1 ± z2 − z3) − 3τ

2 + 1
2 ,±3z1,±3z2; 3τ

)

with

F̂∗(z; τ ) := iϑ(z1; τ )μ̂(z1, z2; τ )μ̂(z1, z3; τ )

+ q− 1
2 ζ−1

1 ζ2ζ3
η3ϑ(z2 + z3; τ )
ϑ(z2; τ )ϑ(z3; τ )

μ̂(z1 + τ , z2 + z3; τ ).

Combining the previous results of this section gives the following.

Theorem 7.4 The function f4 is a sum of products of mock Jacobi forms of weight 3
2 and

index 1
2

( 0 3 0
3 0 0
0 0 −3

)
for 	0(3) ∩ 	(2). To be more precise, f̂4 satisfies for

( a b
c d

) ∈ 	0(3) ∩ 	(2)

f̂4
(

z1
cτ+d ,

z2
cτ+d ,

z3
cτ+d ;

aτ+b
cτ+d

)
= ( 3c

d
)
e

π i(1−d)
4 (cτ + d)

3
2 e

π ic
cτ+d (6z1z2−3z23) f̂4(z1, z2, z3; τ )
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and for �,m ∈ Z
3

f̂4(z + �τ + m) = q−3�1�2+ 3
2 �23ζ

−3�2
1 ζ

−3�1
2 ζ

3�3
3 f̂4(z).

Proof Considering the identity in Proposition 7.2 for the completed functions, we can
shift away all the Yj in the arguments, which also cancels all occurring Yj in the factors
outside. Then the weight, index, subgroup, and multiplier of the completion of g4 can
be deduced from those of ϑ and Â. Since the transformation laws are invariant under
z �→ −z, this implies that f4 is a mock Jacobi form of the same weight, index, subgroup,
and multiplier. ��
The jumps of g4 are at y3 ∈ Zv, y1 − y3 ∈ Zv, and y2 − y3 ∈ Zv. We describe them

explicitly in the following proposition.

Proposition 7.5

(1) If y3 ∈ Zv, y1 − y3, y2 − y3 /∈ Zv, then we have

lim
ε→0+

∑

±
±g4(z1, z2, z3 ± iε; τ ) = −iq− 3

2 (
y3
v )

2
ζ

3y3
v

3
η3(3τ )ϑ(3(z1 + z2); 3τ )
ϑ(3z1; 3τ )ϑ(3z2; 3τ )

.

(2) If y1 − y3 ∈ Zv, y3, y2 − y3 /∈ Zv, then we have

lim
ε→0+

∑

±
±g4(z1 ± iε, z2, z3) =

(
ζ1ζ

−1
3

)3 y1−y3
v q− 3

2

(
y1−y3

v

)2
f3(z1 + z2 − z3, z2 − z3).

(3) If y2 − y3 ∈ Zv, y3, y1 − y3 /∈ Zv, then we have

lim
ε→0+

∑

±
±g4(z1, z2 ± iε, z3)=

(
ζ2ζ

−1
3

)3 y2−y3
v q− 3

2

(
y2−y3

v

)2
f3(z1+z2−z3, z1−z3).

Remark We note that the right-hand side of Proposition 7.5 (1) is meromorphic in
(z1, z2) ∈ C

2 whereas the right-hand sides of Proposition 7.5 (2) and (3) have jumps
in (z1, z2), which can be seen by using Lemma 6.5.

Proof of Proposition 7.5 We only prove (1) and (2) since part (3) follows analogously.
(1)We first assume that z3 = x3 ∈ R and compute for 0 < y1, y2 < v, using (7.2) and (7.3)

lim
ε→0+

∑

±
±g4(z1, z2, x3 ± iε; τ )

=
⎛

⎜⎝
∑

n∈N3
0

+
∑

n∈−N3

⎞

⎟⎠ q3n1n2+3n1n3+3n2n3+ 3n23
2 ζ

3n1
2 ζ

3n2
1

(
ζ1ζ2e−2π ix3

)3n3

−
⎛

⎜⎝
∑

n∈N2
0×N

+
∑

n∈−(N2×N0)

⎞

⎟⎠ q3n1n2+3n1n3+3n2n3+ 3n23
2 ζ

3n1
2 ζ

3n2
1

(
ζ1ζ2e−2π ix3

)3n3

=
⎛

⎜⎝
∑

n∈N2
0

−
∑

n∈−N2

⎞

⎟⎠ q3n1n2ζ 3n1
2 ζ

3n2
1 = −iη3(3τ )

ϑ(3(z1 + z2); 3τ )
ϑ(3z1; 3τ )ϑ(3z2; 3τ )

. (7.4)

This gives the claim in special case that y3 = 0.
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In general, we have y3 = �3v for some �3 ∈ Z, thus z3 = x3 − �3u + �3τ . Writing for
j ∈ {1, 2} zj = zj + �jτ with 0 < Im(z) < v, we then obtain, using Lemma 7.1 (2)

g (z1, z2, z3 ± iε) = q−3�1�2− 3�33
2 e6π i(�3z3−�2z1−�1z2±i�3ε)g (z1, z2, x3 − �u3 ± iε) .

Combining with (7.4) gives the claim.
(2) We begin by computing, for z1 = x1 + iy3, y3 �= 0, using (7.2)

lim
ε→0+

∑

±
±g4(x1 + i(y3 ± ε), z2, z3)

= lim
ε→0+

∑

±
±

⎛

⎜⎜⎜⎝
∑

n∈Z3

n+ 1
v (±ε,y2−y3 ,y3)≥0

+
∑

n∈Z3

n+ 1
v (±ε,y2−y3 ,y3)<0

⎞

⎟⎟⎟⎠

× q3n1n2+3n1n3+3n2n3+ 3n23
2 ζ

3(n2+n3)
1 ζ

3(n1+n3)
2 ζ

−3n3
3

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∑

n1≥0
n2+ y2−y3

v ≥0
n3+ y3

v ≥0

−
∑

n1>0
n2+ y2−y3

v ≥0
n3+ y3

v ≥0

+
∑

n1<0
n2+ y2−y3

v <0
n3+ y3

v <0

−
∑

n1≤0
n2+ y2−y3

v <0
n3+ y3

v <0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

× q3n1n2+3n1n3+3n2n3+ 3n23
2 ζ

3(n2+n3)
1 ζ

3(n1+n3)
2 ζ

−3n3
3

=

⎛

⎜⎜⎜⎜⎝

∑

n3+ y3
v ≥0

n2+ y2−y3
v ≥0

−
∑

n3+ y3
v <0

n2+ y2−y3
v <0

⎞

⎟⎟⎟⎟⎠
q3n2n3+

3n23
2 ζ

3n2
1

(
ζ1ζ2ζ

−1
3

)3n3

= f3(z1 + z2 − z3, z2 − z3).

Now we consider z1 ∈ C with y1 − y3 = �v for some � ∈ Z. Then z1 = x1 − �u+ iy3 + �τ .
Lemma 7.1 (2) gives that

g4(z1 ± iε, z2, z3) = ζ−3�
2 g4(x1 − �u + i(y3 ± ε), z2, z3).

Combining this, we may conclude the claim, using Lemma 6.1. ��
From Proposition 7.5 we immediately obtain the following corollary.

Corollary 7.6

(1) If y3 ∈ Zv, y1 − y3, y2 − y3 /∈ Zv, then we have

lim
ε→0+

∑

±
±f4(z1, z2, z3 ± iε) = 0.

(2) If y1 − y3 ∈ Zv, y3, y2 − y3, y1 + y3, and y2 + y3 /∈ Zv, then we have

lim
ε→0+

∑

±
±f4(z1 ± iε, z2, z3) =

(
ζ1ζ

−1
3

)3 y1−y3
v q− 3

2

(
y1−y3

v

)2
f3(z1 + z2 − z3, z2 − z3).
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(3) If y1 + y3 ∈ Zv, y3, y2 − y3, y1 − y3, y2 + y3 /∈ Zv, then we have

lim
ε→0+

∑

±
±f4(z1 ± iε, z2, z3) =

(
ζ1ζ

−1
3

)3 y1+y3
v q− 3

2

(
y1+y3

v

)2
f3(z1 + z2 + z3, z2 + z3).

(4) If y1 − y3, y1 + y3 ∈ Zv, y3, y2 − y3, y2 + y3 /∈ Zv, then we have

lim
ε→0+

∑

±
±f4(z1 ± iε, z2, z3) =

(
ζ1ζ

−1
3

) 3y1
v q− 3

2v2 (y
2
1+y23)

×
((

ζ−1
1 ζ3

) y3
2 q

3y1y3
v f3(z1 + z2 − z3, z2 − z3) +

(
ζ1ζ

−1
3

) y3
v q− 3y1y3

v f3(z1 + z2 + z3, z2 + z3)
)
.

Remark Since f4(z) = f4(z2, z1, z3), one obtains descriptions of jumps analogous to (2),
(3), and (4) by exchanging the first and second variable.

The following lemma computes one-sided limits to the jumps of g4, which are built from
of μ-functions and theta-functions. For this define

T (z; τ ) := ϑ
( 3τ
2 + 1

2 ; 3τ
)
ϑ
(
3z + 1

2 ; 3τ
)
ϑ
(
3z + 3τ

2 ; 3τ
)

ϑ
(
3z + 3τ

2 + 1
2 ; 3τ

) .

Lemma 7.7

(1) We have

lim
ε→0+ g4(z1, z2, iε; τ )

= −q− 3
2

(⌊ y1
v
⌋2+⌊ y2

v
⌋2)− 3

2 (
⌊ y1

v
⌋+⌊ y2

v
⌋
)− 3

8 ζ
3
⌊ y1

v
⌋

1 ζ
3
⌊ y2

v
⌋

2 ϑ
(
3 (z1 + z2) − 3τ

2 + 1
2 ; 3τ

)

× μ
(
3 (z1 + z2) − 3

⌊ y2
v
⌋

τ − 3τ
2 + 1

2 , 3z1; 3τ
)
μ
(
3 (z1 + z2) − 3

⌊ y1
v
⌋

τ − 3τ
2 + 1

2 , 3z2; 3τ
)

− iη3(3τ )
2ϑ(3z1; 3τ )ϑ(3z2; 3τ )

(
−ϑ(3 (z1 + z2) ; 3τ ) + q

3
8 T (z1 + z2)

)
.

(2) We have

lim
ε→0+ g4(z3 + iε, z2, z3; τ )

= −1
2
q− 3

2

⌊
y2−y3

v

⌋2− 3
2

⌊
y2−y3

v

⌋

ζ
3
⌊
y2−y3

v

⌋

2 ζ
−3

⌊
y2−y3

v

⌋
− 3

2
3 ϑ

(
z2 − 3τ

2 + 1
2 ; 3τ

)

× μ
(
3z2 − 3

⌊
y2−y3

v

⌋
τ − 3τ

2 + 1
2 , 3z3; 3τ

)(
−1 + q

3
8

T (z2)
ϑ(3z2; 3τ )

)

− iq− 3
2
⌊ y3

v
⌋− 3

8 ζ
3
⌊ y2

v
⌋+ 3

2
3

η3(3τ )ϑ(3(z2 + z3); 3τ )
ϑ(3z2; 3τ )ϑ(3z3; 3τ )

μ
(
3z2 + 3τ

2 + 1
2 , 3 (z2 + z3) − 3

⌊ y3
v
⌋

τ ; 3τ
)
.

(3) We have

lim
ε→0+ g4(z1, z3 + iε, z3; τ )

= −1
2
q− 3

2

⌊
y1−y3

v

⌋2− 3
2

⌊
y1−y3

v

⌋

ζ
3
⌊
y1−y3

v

⌋

1 ζ
−3

⌊
y1−y3

v

⌋
− 3

2
3 ϑ

(
z1 − 3τ

2 + 1
2 ; 3τ

)

× μ
(
3z1 − 3

⌊
y1−y3

v

⌋
τ − 3τ

2 + 1
2 , 3z3; 3τ

) (
−1 + q

3
8 T (z1)

ϑ(3z1;3τ )

)

− iq− 3
2
⌊ y3

v
⌋− 3

8 ζ
3
⌊ y3

v
⌋+ 3

2
3

η3(3τ )ϑ(3(z1 + z3); 3τ )
ϑ(3z1; 3τ )ϑ(3z3; 3τ )

ϑ
(
3z1 + 3τ

2 + 1
2 , 3 (z1 + z3) − 3

⌊ y3
v
⌋

τ ; 3τ
)
.

Proof (1) We use Proposition 7.2 and Lemma 7.3 and simplify the occurring functions
using Lemma 2.1 (2), Lemma 2.4 (1) and (4) to conclude the statement after a lengthy
calculation.
(2) The claim follows in a similar way. ��
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8 Discussion and open questions
For the enumeration ofN -gons with 3 ≤ N ≤ 5, the explicit computations in the previous
sections exhibit nice formulas for the generating functions in terms of rational functions
in the Jacobi theta functions and the μ-function. Using the results in [17] about the μ-
function, this tells that the generating functions are actually mock objects whose modular
completions can be easily found. One geometric consequence of the mock modularity is
that the generating functions, originally defined around τ = i∞, can be extended to the
global moduli of elliptic curves upon modular completion.
The generating function of 6-gons can be written down similarly according to the geo-

metric construction reviewed earlier in Section 3. It is essentially given by the following

f5(z; τ ) :=
∑

n∈Z4∩D
sgn (n1 + α1 − n3 − α3) q3n1n2−

3
2n

2
3− 3

2n
2
4ζ

3n2
1 ζ

3n1
2 ζ

−3n3
3 ζ

−3n4
4 ,

where the parameters αk , k ∈ {1, 2, 3, 4} satisfy |α3|, |α4| ≤ min(|α1|, |α2|) and the region
D is given by

D := −α + {x ∈ R
4 : |x3|, |x4| ≤ min(|x1|, |x2|) and x1x2, x1x3, x1x4 ≥ 0

}
.

Motivated by the studies on homological mirror symmetry [13], we propose the following
conjecture.

Conjecture The generating function f5 has mock Jacobi properties.

While directly identifying this generating function in terms of Appell functions and theta
functions seems tobedifficult, it shouldbepossible todetermine itsmock Jacobi properties
using the theory of indefinite theta functions of arbitrary signature. Such an approach
could also enable progress on N -gons with arbitrary numbers of vertices N ∈ N, which
requires a more uniform geometric setup for N -gons.
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